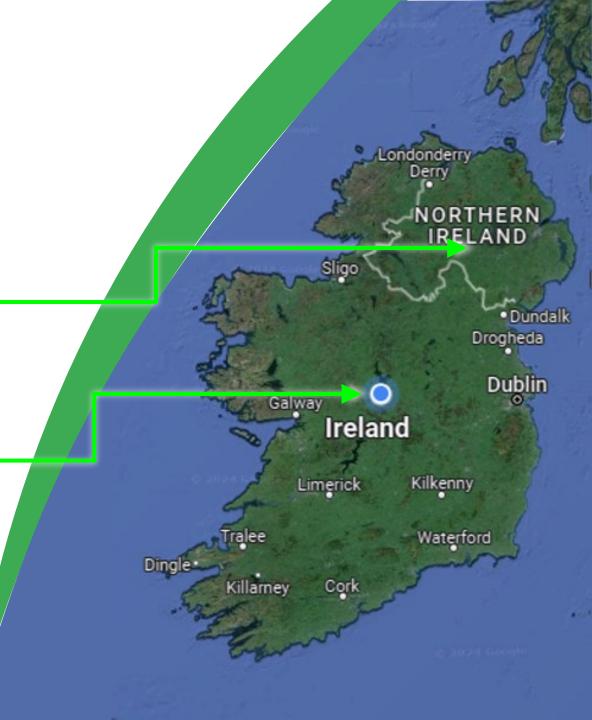


Introduction to Arran

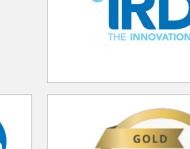
Overview of technologies and manufacturing capabilities



Location

Arran differentiators

PHARMACEUTICAL SUPPLY CHAIN INITIATIVE


Chemistry experience:

- Over 30 years of experience in handling difficult small molecule chemistry.
- Modular, flexible, adaptable equipment to suit many processes.
- Flexibility to supply kg to 100 tonnes

Quality:

- Routinely audited by top pharma companies.
- EU based manufacturer with REACH compliance experience
- ISO compliant and approved by US FDA Food division.
- Excellent health and safety and environmental standards.
- Registered on over 30 Drug Master Files.

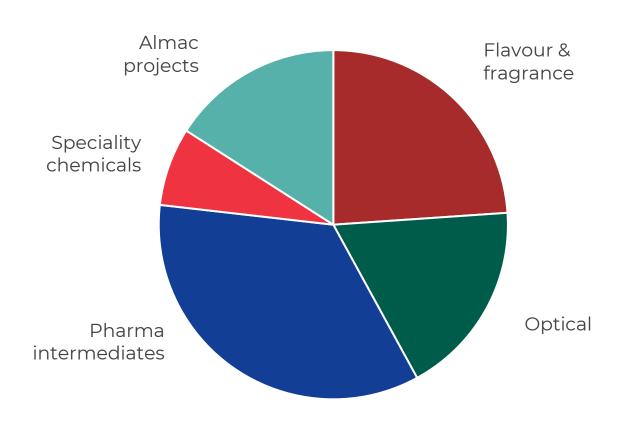
Foundation status

ENERGY MANAGEMENT

ENVIRONMENTAL MANAGEMENT

QUALITY MANAGEMENT

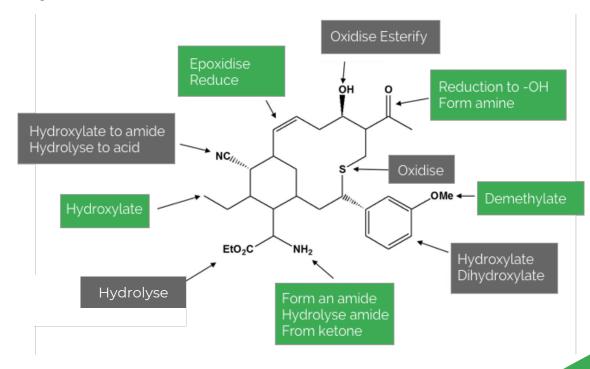
EU REACH COMPLIANT



AUDITED BY HUMAN FOODS

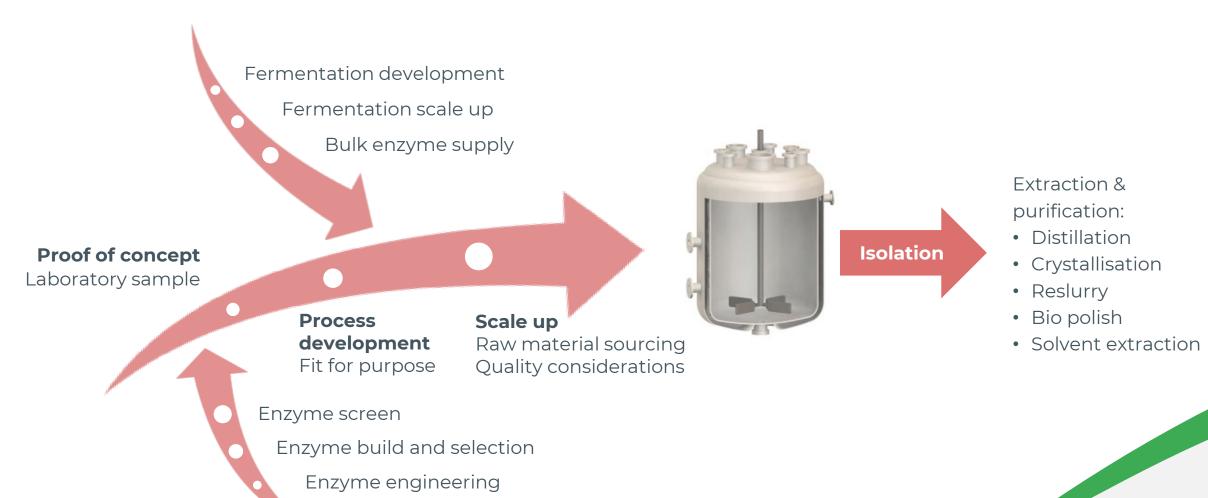
Arran client base

Geography	Revenue
Europe	45%
United States	40%
Asia	10%
Rest of world	5%

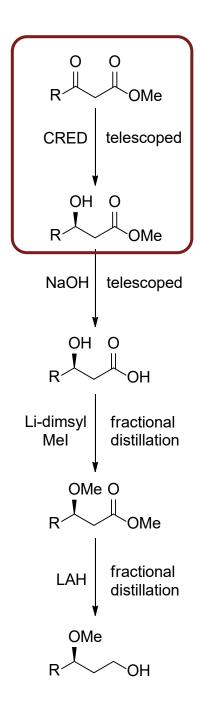


Chemistry experience

Classical:


Alkylation	Methylations	
Aminoalkylation Michael reaction		
Asymmetric synthesis Optical resolution		
Condensations	Organometallic	
Dealkylation	Organosilicon	
Dieckmann condensation	Oxidation	
Diels Alder reaction	Ritter reaction	
Grignard reactions	Stereo-selective reactions	
Heck reaction	Heck reaction Suspension polymerisation	
Leuckart reaction	on Flow hydrogenation	
Mannich reaction Transfer hydrogenation		

Enzymatic:

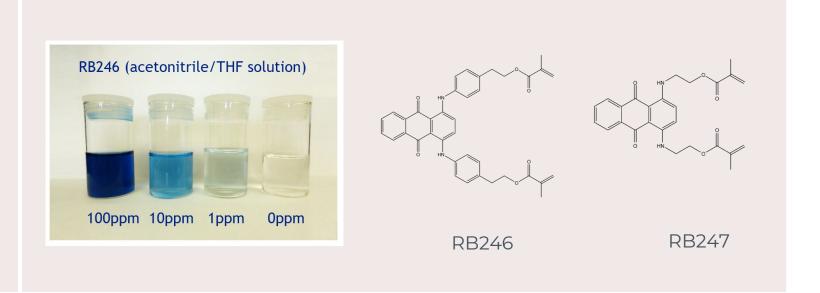

Core technology: Biocatalysis

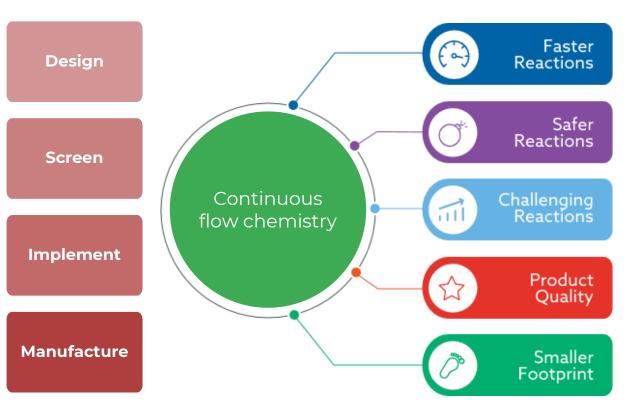
Case study: RSM manufacture (1 of 2)

- Japanese client requires regulatory starting material for Phase 3 clinical trials.
- Chemocatalysis failed to deliver target specification (99.2%) for enatiomeric excess.
- New synthetic route, process development and multi tonne supply necessary.
- Strategies developed for control of:
 - Diol impurity
 - Vinyl impurity

Case study: RSM manufacture (2 of 2)

Properties	Specification target	Specification achieved	
Enantiomeric excess	Greater than 99.2%	99.3%	
Named impurity (Diol)	No greater than 0.5%	Less than 0.2%	
Named impurity (Vinyl)	No greater than 0.5%	Less than 0.15%	
Named impurity (BHT)	No greater than 0.5%	Less than 0.2%	
Named impurity (Me-BHT)	No greater than 0.5%	Less than 0.2%	
Unnamed impurities	No greater than 0.1%	Less than 0.1%	




Case study: Products for optical industry

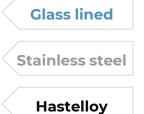
Monomers ÙV blockers, Co-polymer and Reactive Blue dyes

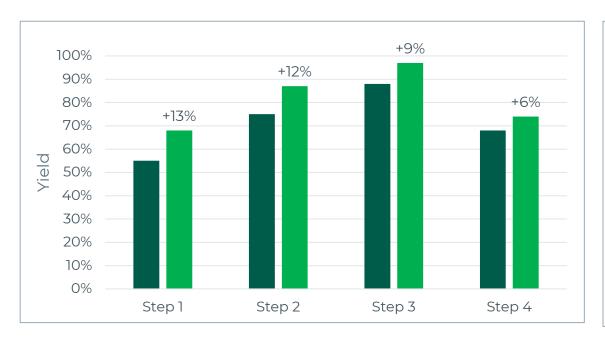
Core technology: Flow chemistry

Case study: Price saving from flow hydrogenation

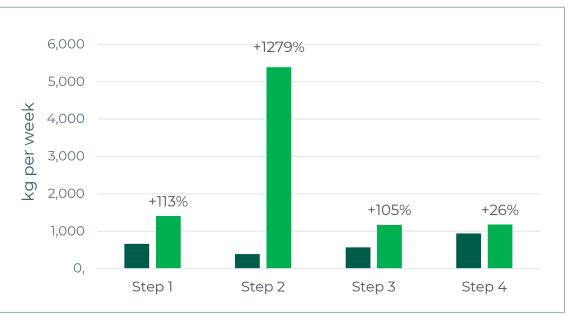
Description	Batch process	Flow process
Mass of substrate to process	117	kg
Hydrogenation catalyst deployed	Pd on activated carbon	Pd on Al ₂ O ₃ pellets
Loading catalyst	10% weight	1.07% weight
Mass of catalyst	11.7 kg	1.25 kg
Catalyst price contribution (EUR)	€49,217	€5,250

Core technology: Pilot plant




Case study: Process optimisation (1 of 2)

Reduction in reactor days Flimination of solvent switch Step 1: Reduction in solvent volume Use of HCl (gas) instead of HCl (solution) Alkylation • Elimination of one processing solvent Improved mixing and agitation Reduction in reactor days Step 2: Reduction of solvent volumes Boc protection • Deployment of less expensive processing solvent Reduction in solvent volumes · Computer modelling to optimise mixing and reactor fit Step 3: • Lowered reaction temperature to -25°C • Deployment of less expensive quenching agent Cryogenic step Incorporated second reactor for guench and work up • Replacement of solvent mix (custom to commercially available) Step 4: Reduction in solvent volumes **Hydrolysis** Elimination of one processing solvent



Case study: Process optimisation (2 of 2)

Yield

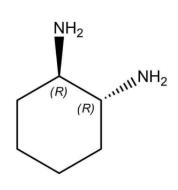
Throughput

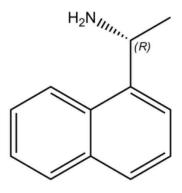
Before optimisation

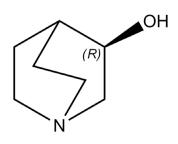
EUR €1,154 per kg

After optimisation

EUR €815 per kg




Core technology: Production plant

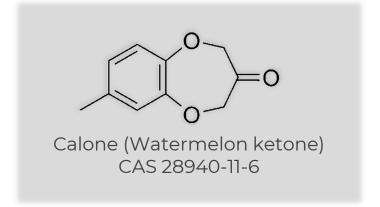


Case study: Regulatory starting materials

Cyclopentyl mandelic acid (and derivatives)	(R,R)-(-)-1,2-Diaminocyclohexane (and diastereomers)	(R)-(+)-1-(1-Naphthyl)ethylamine (and enantiomer)	(R)-(-)-3-Quinuclidinol
Glycopyrrolate (peptic ulcers)	Oxaliplatin (oncology)	Cinacalcet (hyperparathyroidism)	Ibiglustat (liposomal disease)
Hazardous Grignard chemistry	Classical chiral resolution	Leuckart chemistry	Biocatalysis technology
Maximum output: 12,000 kg per annum	Maximum output: 30,000 kg per annum	Maximum output: 20,000 kg per annum	Maximum output: 25,000 kg per annum

Core technology: Distillation

- Distillation of thermally sensitive materials
- Falling film, thin film and short path
- Up to 200 L per distillation
- Arran has three falling film distillation units


Vacuum	Down to 1 mbar
Output	Up to 15 kg per hour
Materials	Stainless steel and glass lined

Case study: Manufacture of Calone (WMK)

- Europe's number one supplier.
- Up to 35,000 kg manufactured by Arran in Ireland per year.
- Industry leading purity with intense marine aromatic note.
- Industry leading quality and environmental standards.
- "Just-In-Time" supply from 25 kg to multi-tonne with short lead times.

Core technology: Protein purification

Case study: iLipase beads

- Lipase enzyme immobilised on methacrylate polymer beads.
- Process development on bead formation (polymerisation) and enzyme immobilisation.
- Three clinical trials batches successfully scaled up.
- Approximately 15,500 kg commercial batches manufactured.

Sustainability

Accountable waste stream processing

2

Strict control of gaseous emissions

3

Responsible Care® programme

Sustainable manufacture

Summary

- Arran builds long term relationships with companies seeking to develop and manufacture challenging fine and speciality chemicals.
- Manufacturing capacity is available at short notice.
 - This presents an excellent time to partner.
- Arran welcomes visits/audits of our headquarters in Athlone, Ireland and meetings at booth 715.

Gareth Maguire
Business Development Director
E gareth@arranchemical.ie
T +44 7785 699314

Expertise **Biocatalysis** Aroma products Regulatory Chiral amines & alcohols starting materials Optical monomers

Scott Alvarado
Business Development Director
E scott.alvarado@almacgroup.com
T +1 919 937 6213